Welcome to our Maths Information Workshop for Parents

How maths is taught today... What are all those strange bits of equipment? How you can help...

Have a go at some of our activities whilst you are waiting!

Upper Key Stage 2

Years 5 and 6

March 2019

How did you get on with your starting activities?

How did you feel when we asked you to do this?

This is how the children feel!

Activity 1

Here are 4 numbers:

$8 \quad 16 \quad 15 \quad 23$

Which is the odd one out and why?

Activity 2
A puzzle!

Can you think of a job or everyday task where maths is not used in some way?

fra te ore no wits
$\underset{\text { gaming in }}{\text { gam }} \because$
your way forward.

 anis about maths Deciding werisst of whole

 wringing scale measures

maths

careers

Institute of

mathematics

How do you feel about maths?

Maths

Wich of these words would you use to describe mathematics?

Maths

Maths today is a bit different to how some of us might remember being taught it!

Why we do things differently...

Maths

$$
\text { 1. Write }<\text { or }>\text {. }
$$

$$
\begin{aligned}
& \text { a. } 0.5 \frac{\partial r}{\partial r} 1.0 \\
& \text { b. } 3.2 \frac{1.02}{r}
\end{aligned}
$$

$$
\text { c. } 4.83
$$

or
 4.8
d. 6.25

e. 0.7

Q: What's the difference between 9 and 4?

Child's answer: The 9 is curvy and the 4 is all straight!

Math Test

1. Bob has 36 candy bars. He eats 29 .

What does he have now?
Diabetes
Bob has diabetes.

Maths

How we teach maths: National Curriculum 2014

Aims

Fluency ...Sense of playfulness with number, seeing patterns, seeing numbers within numbers....

Reasoning ...Making sense of maths and explaining connections...

Problem Solving ...Using and applying maths understanding and skills to different contexts/ puzzles ...

Equals... equivalence.. balance

Maths

> ‘Old' style
$8+4=$
$4+8=$
$7+5=8+$
'New style' maths

$$
\begin{aligned}
& 8+4= \\
& 12=\square+4 \\
& 120=80+
\end{aligned}
$$

$$
7+\square=8+
$$

$$
\square+\square+\square=\square+\square
$$

Equals... equivalence.. balance

Maths

Greater depth

Is it possible to only use odd numbers for the missing boxes? Or just even numbers?

Using just the digits 1-7?
Can you change the operation $+-\mathrm{x} \div$ and keep the balance?

UKS2 Can this be completed using prime numbers only?

Mastery approach

- Learning sequences build on each other and help children make connections between mathematical concepts.

Maths

- Longer time on key concepts to give secure foundations - not dawdling but deepening
- Time to think deeply about maths - with same focus/pace for most of class but opportunities for broadening and deepening
- An inclusive approach that helps to build selfconfidence, with misconceptions tackled as they happen
- Not accelerating onto later year's content or larger numbers - challenge with same concept

Concrete... pictorial... abstract

Maths

Concrete manipulatives

Maths

I know I have 35 beads on this side and 46 on this side. What will I need to do to find out how many the missing part is equal to?

Maths

Fluency

...Sense of playfulness with number, seeing patterns, seeing numbers within numbers....

$$
8+9=
$$

Children need strategies beyond using concrete apparatus and counting:

Near doubles

Bridging ten
Rounding and adjusting

Fluency

...Sense of playfulness with number, seeing patterns, seeing numbers within numbers....
Maths
Taken from a Year 4 sequence:If $185+427=612$
Complete this calculation:

$$
162+\ldots=612
$$

Explain your strategy.

Year 2: Equal difference
21-16
is the same as 20-15

Maths

Lack of Fluency

Children who leave KS1 counting
$3+4$ on fingers, not secure on doubling, halving and basic number + and - facts
face a real problem when learning written methods to add or subtract in Year 3

You can really help support your child at home to develop their fluency (more later)

Reasoning

Maths

If \mid know $8+9=17$ what else do l know?

$$
\begin{aligned}
& 80+90=8+9=17 \quad 17-8=9 \\
& 0.8+0.9=
\end{aligned}
$$

The same is true for multiplication -

Working from the base fact:

$$
6 \times 4=24
$$

What else do we know?

$$
4 \times 0.6=2.4 \quad 60 \times 40=2400
$$

$$
24 \div 4=6
$$

$$
240 \div 6=40
$$

Reasoning

Here are 4 numbers:

What do you notice about these numbers?
8
16
15
23

Which is the odd one out and why?
Explain your reasons

Problem solving

Maths

Multiplication Challenge

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown below. Each star like this stands for one digit.

*

Apart from the zero shown the only digits which occur are 2, 3, 5 and 7. This is sufficient information to complete the whole multiplication.

Problem solving

Maths

Conversation cartoons

Maths

You can't see all the squares properly. You can still work out the area in squares for Shape A and Shape B because it is like an array and you can use your multiplication facts.

Two people are talking about the area of some rectangles.

Who is right? Prove it!

Talk frames

AViates

Reasoning Speaking Frame

I notice ...
I know ... because ...
If ... then ...
I can work out ...

Importance of Mathematical Talk

Maths

$1024-512$	$754-149$
$812-562$	$1003-997$

I noticed that... so I chose this strategy because

CPA and talk together

Maths

I can see 1 thousand, 2 hundreds, 3 tens and 6 ones.

$$
1000+200+30+6
$$

It is thirty six more than one thousand, two hundred.
\square thousands, \square hundreds, \square tens and \square ones.
$\square \square \square \square+\square \square \square+\square \square+\square=\square \square \square \square$

Our maths week:

Core Learning (5 sessions) Herts for Learning Essentials Maths Customised to our learners by additional challenge and carefully crafted practise opportunities sourced by teachers. Includes scaffolds to support the closing of gaps and ARE questions to help assessment.

Fluency Skills - discrete teaching sessions focusing on fluency to keep new skills live, often using games. Weekly arithmetic and number fact practise. E-learning e.g. using Numbergym.

Additional pre-teaching and intervention to support children as needed. Cross curricular opportunities to give maths meaning and purpose - science/ topic/ PE etc!

Homework - overlearning number facts, practising of key concepts, topic opportunities (e.g. recipes, statistics).

Ways we approach maths learning in class:

Maths

Destination question:

Investigate...

Can you draw a compound shape of your own in your maths book and then calculate the total area?

Try calculating one by counting the squares inside the shape.
Try a different one by writing the measurements along the lines (like the diagrams)!

Ways we approach maths learning in class:

Maths

Destination question:

Investigate...

Can you draw a compound shape in your maths book with an area of 32 cm 2 ? Is there more than one way of doing it?

Ways we approach maths learning in class:

Maths

Destination question:

What is the combined area of the rectangles?

Investigate: Can you demonstrate three different ways of calculating this?

Challenge:
Jack has a shape with an area of $34 \mathrm{~cm}^{2}$.

Find 3 possible compound shapes that have an area of $34 \mathrm{~cm}^{2}$.

Arithmetic

Additional fluency in class

Maths
Year 5 programme of study (statutory requirements)

Number and place value Puplls should be taught to: - read, write, order and compare numbers to at least 1000000 and detarmine the value of each diglt - count forwards or backwards in staps of powers of 10 for any glven number up 10 1000000 - Imtarpret negative numbers In combext, count forwards and backwards with posifive and negative whole numbers, Including through zaro - round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000 - solve number problems and practical problems that Involve all of the above - read Roman numerals to 1000 (M) and recognlse years written in Roman numerals	Addition and subtraction Puplls should be taught iv: - add and subtract whole numbers with more than 4 digits, Including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with Increasingly large numbars - use rounding to check answers to calculations and detarmine, in the comtert of a problem, levals of accuracy - solve addition and subtraction mult-step problems in comlexts, deciding which operations and methods to use and why	Multiplication and division Puplis ahould be taught to: - Identify muitples and tactors, Including finding al factor pairs of a number, and common tactors of two numbers. - know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - multply numbers up 104 digits by a one or two-dgit number using a formal written method, Including long multplication for two-dgit numbers - multply and divide numbers mentally drawing upon known facts - divide numbers up to 4 digits by a one-diglt number using the formal written method of short division and Intarpret remainders appropriataly for the contert - muitiply and divide whole numbers and those involing decimals by 10,100 and 1000 - recogrise and use square numbers and cube numbers, and the notation for squared (') and oubed (') - solve problams imvoling multplication and division including using thelr knowledge of factors and multples, squares and cubes - solve problams imvoling addition, subtraction, multplication and divislon and a combination of thase, Including understanding the meaning of the equals slgn - solve problems imvoling muitplication and division, including $8 c a \mathrm{lng}$ by simple fractions and problems imoling slimple ratas

Pupls should be taught to:

- compare and order fractions whose denominators are all multples of the same number
- Identity, name and write equivalent fractions of a glven fraction, representad visually, Including tenths and hundredths - recognise mbxed numbers and improper tractions and corvert fom one form to the other and write mathematical staiements >1 35 a mbxed number [for example, $2 / s+3 / s$ ${ }^{6} /{ }^{6}-1^{1} / \mathrm{l}$
- add and subtract fractions with the same denominator and mutples of the same number
- multply proper fractions and mbxed numbers by whole numbers, supported by matarials and dagrams
- read and write dedimal numbers 35 fractions [for example, $0.71-{ }_{100}$] - recognise and use thousandths and relate them to tenths, hundredths and relate them to tentins,
decimal equivalents
- round decimals with two decimal places to the nearest whole number and to one to the nearest
decimal place
- read, write, order and compare numbers - read, write, order and compa
with up to three decimal places
- solve problems ilnvolving number up to three decimal places
- recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred, and witte percentages decimal
- solve problems which require knowing percentage and decimal equivalents of $/ z^{\prime}$
${ }^{1} / 4^{\prime},{ }^{1} / \mathrm{s}^{2} \mathrm{z}^{2},^{4} / \mathrm{a}$ and those with a denomination of a mutiple of 10 or 25

Measurement Puplis should be taught 10:

- convert between different units of metric measure (for example. Kiometre and metre, centmetre and metre.
centmetre and centmetre and m metre; gram and
killogram; ilite and millie)
- understand and use - undoerstand equivalences between metric units and common imparial units such 35 inches, pounds and pints
- messure and calculate the parimetar of composite rectilinear shapas in centimetres
and metres
- calculate and compare the area of rectangles (Including squares) using standard units, square centimetres (cm^{2}) and square metres $\left(m^{2}\right)$ and estmate the area of IIregular shapes
- estimate volume for
example, using $1 \mathrm{~cm}^{2}$
blocks to bulld
cubolds(Including
cubss)] and
capacityfor example, using waler] - solve problems imvoling converting between unils of time - use all four operations to solve problems Imoling measure flor example, length, mass, volume, money] using decimal notation Including scaling

Geomet

 propertleshapes

Pupls should be taught to:

- Identity 3-D shapes, shapes, including cubold Cubolds, from 2 representations - know anglas are mazsured in are messu
degress:
esimate and compare acuta
obluse and ootuse and
reflex angles refex angles angles, and messure them in degress (i) degrees (
- angles at a point and one whole turn (total 350°)
point on a point on a straight line and $1 / 2$ a turn (total 180°)
mutples of 90° - use the propartas of rectangles to deduce related tacts and ind missing lengths and angles
. dsting between regular and irregular polygons based polygons bas
on reasoning on reasoning
about equal about equa
sidgs and sldas and

Geometry:	Statiotice
and	Pupls
direction	should be
Pupls	taught to:
should de	- solve
taught to:	compariso
	n, sum and
- Identity.	diftarence
describe	problems
	using
represent	information
the	presented
posilion of	in a line
a shape	graph
following a	- complet
refection	e, read and
or	IItarpret
translation	information
using the	In tables,
appropri3ie	Including
language,	tmetables

language,
that the
shape has
not

Statistice

Year 5 and 6 Learning in Action!

Maths

Year 5 - Spring term

The National Curriculum, detailed Programmes of Study, and Year group learner documents are all on the school website. You can also find information about what's coming up in maths on our termly class newsletter.

Maths

Term 2		
Week One	5LS16	Problem Solving - All Four Operations
Week two	$\begin{aligned} & 5 L \text { LS17 } \\ & 5 L . S 18 \end{aligned}$	Multiply Fractions by Whole Numbers Fraction Problem Solving
Week three	5LS19	Measure: Converting Units of Measure
Week tour - five	$\begin{aligned} & \text { 5LS20 } \\ & 5 L S 21 \end{aligned}$	Area Volume and Capacity
Week six - seven	$\begin{aligned} & 5 L \mathrm{~S} 22 \\ & 5 \mathrm{LS} 23 \end{aligned}$	Percentages Problem Solving - Percentages
Week eight	$\begin{aligned} & 5 L S 24 \\ & 5 L S 25 \end{aligned}$	3-D Shapes from 2-D Representations Reflection and Translation
Week nine - ten	$\begin{aligned} & 5 \mathrm{LS} 26 \\ & 5 \mathrm{LS} 27 \\ & 5 \mathrm{LS} 28 \end{aligned}$	Perimeter Estimate, Compare, Measure and Draw Angles Identify Unknown Angles

Year 6 - Spring term

The National Curriculum, detailed Programmes of Study, and Year group learner documents are all on the school website. You can also find information about what's coming up in maths on our termly class newsletter.

Maths

Term 2		
Week one	6LS16	Order of Operations and Algebra
Week two	6LS17	Formal Written Method for Long Division
Week three	6LS18	Exploring Relationships Between Perimeter and Area
Week four	6LS19 6LS20	Recognise and Find Angles Reflection and Translation
Week five and six	6LS21 6LS22 6LS23	Multiplying Fractions Dividing Fractions Fraction Problem Solving
Week seven	6LS24	Ratio and Proportion
Week eight	6LS25 6LS26	Volume
Weasures		
Week ten	6LS27	Statistics - Interpret Line Graphs and Pie Charts

Year 6 SATS wb 13/5/19

Time
Monday
Reading Comprehension 1 hour

Wednesday

Maths paper 1:
Arithmetic
30 minutes

Break
Break
Maths test 3:
Reasoning
45 minutes

Break

Maths test 2:
Reasoning
45 minutes

We have been preparing the children for these tests in the best way we feel to ensure they know: what the week will look like, what the tests will be like and how they will tackle them with our support as needed. We have been proud of how the children have tackled these so far. They have had two sets of Mock SATs papers since and will have one more nearer to Easter.

Any extra practice they want to do at home is always beneficial and you can purchase SATS practice books.
In school we use the CPG books as well as tailored extra practice as the children identify what they want to work on. This is often identified and completed in booster group sessions in small groups on a Monday and will also be in the breakfast booster session we will run soon.

Maths

Enjoying maths at home

1. Praise your child for effort
2. When checking homework, celebrate mistakes as learning points - take the time to go through it with before they say its done.
3. All mistakes are beautiful and a learning opportunity!
4. Try not to show frustration. Take a break, let everyone calm down and come back to it
5. Do not pressurise children. Whilst knowing times tables is important, it doesn't make you a bad mathematician if you can't remember them.
6. Don't describe yourself as useless at maths
7. Show yourself to be curious about maths and playful with numbers. Make it fun!

How can parents help at home

- Any counting and dice games, card games, any maths games!
- Look for Maths in the Every Day (next slide)
- Practise quick fire number facts at home
- + and - facts to 10, 20
- x tables
- base facts

Come in and ask us if you need advice!

Maths in the Every Day

Need help with strategies?

School Journals - contain examples of written methods we use, explanations of fractions, shapes, perimeter, area, rounding, time etc

- Lots of detail!
- Please look at them and encourage children to use them to support homework

Come in and ask us if you need advice!

E-learning that supports maths

and children can log onto free from home

User name: ashwell Password: silver This is an excellent resource to help with learning in all areas of maths. Bond Builder and Table Trainer are accessible via tablet.

Let's give you one more challenge!

\because

Select some cards...

What numbers can you make with these cards when you put them in a number sentence?

Examples...

$$
\begin{array}{rlrl}
10-8 & =2 & 8 \div 2=4 \\
10-1 \times 2 & =18 & 10 \times 8 \times 2=160
\end{array}
$$

Many thanks for attending tonight. We hope you have found it useful.

Please fill in our evaluation survey.

Mrs Wild's talk about mental health begins at 7pm in the main hall!

