Ashwell School Written Calculation Policy

Rationale

This policy provides an outline of progression through written strategies for addition, subtraction, multiplication and division in line with the September 2014 National Curriculum. Through the policy, we aim to link key manipulatives (practical equipment) and representations in order that the children can make progress through each strand of calculation. A school wide policy will ensure consistency of approach, enabling children to progress stage by stage through models and representations they recognise from previous teaching, allowing for deeper conceptual understanding and fluency. As children move at the pace appropriate to them, teachers will be presenting strategies and equipment appropriate to children's level of understanding. However, it is expected that the majority of children in each class will be working at age-appropriate levels as set out in the National Curriculum 2014 and in line with school policy.

The importance of mental mathematics

While this policy focuses on written calculations in mathematics, we recognise the importance of the mental strategies and known facts that form the basis of all calculations. The following checklist outlines the key skills and number facts that children are expected to master as they move through the school.

To add and subtract successfully, children should be able to:

- recall all addition pairs to $9+9$ and number bonds to 10
- recognise addition and subtraction as inverse operations
- add mentally a series of one digit numbers (e.g. $5+8+4$)
- add and subtract multiples of 10 or 100 using the related addition fact and their knowledge of place value (e.g. $600+700,160-70$)
- partition 2 and 3 digit numbers into multiples of 100, 10 and 1 in different ways
(e.g. partition 74 into $70+4$ or $60+14$)
use estimation by rounding to check answers are reasonable

To multiply and divide successfully, children should be able to:

- add and subtract accurately and efficiently
- recall multiplication facts to $12 \times 12=144$ and division facts to $144 \div 12=12$
- use multiplication and division facts to estimate how many times one number divides into another etc. (e.g. $45 \div 9=5$ / there are 5 nines in 45)
- know the outcome of multiplying by 0 and by 1 and of dividing by 1
- understand the effect of multiplying and dividing whole numbers by 10, 100 and later 1000
- recognise factor pairs of numbers (e.g. that $15=3 \times 5$, or that $40=10 \times 4$) and increasingly able to recognise common factors
- derive other results from multiplication and division facts and multiplication and division by 10 or 100 (and later 1000)
- notice related facts and recall them with increasing fluency e.g. if $9+14=23$ then $23-9=14$
- partition numbers into $100 \mathrm{~s}, 10 \mathrm{~s}$ and 1 s or multiple groupings
- understand how the principles of commutative, associative and distributive laws apply or do not apply to multiplication and division
multiplication is commutative but division is not:
e.g $9 \times 3=27$ and $3 \times 9=27 / 9 \div 3=3$ but $3 \div 9 \neq 3$
multiplication is associative but division is not:
e.g. 12×3 is the same as $(4 \times 3) \times 3$
the distributive law applies to both multiplication and division:
e.g. $6 \times 14=(6 \times 10)+(6 \times 4)=60+24=84 / 56 \div 8=(40 \div 8)+(16 \div 8)=5+2=7$
understand the effects of scaling by whole numbers and decimal numbers or fractions
e.g. making an amount 3 times larger $(25 \times 3=75)$, half as much $(20 \times 1 / 2=10 / 20 \times 0.5=10)$
- investigate and learn rules for divisibility
e.g. How do we know when a number is divisible by $2,5,10,3$ etc?

Progression in addition and subtraction

Addition and subtraction are connected.

Part	Part
Whole	

Addition names the whole in terms of the parts and subtraction names a missing part of the whole.

Count one set, then the other set. Combine the sets and count again. Starting at 1.
Counting along the bead bar, count out the 2 sets, then draw them together, count again.
Starting at 1.

Combining two sets (augmentation)

This stage is essential in children starting to calculate rather than count
Where one quantity is increased by some amount. Count on from the total of the first set, e.g. put 3 in your head and count on 2. Always start with the largest number. Counters:

Start with 7, then count on $8,9,10,11,12$
Bead strings:

Make a set of 7 and a set of 5 . Then count on from 7.

Subtraction

Taking away (separation model)
Where one quantity is taken away from another to calculate what is left.
$7-2=5$

$\bigcirc \nless$
Multilink towers - to physically take away objects.

Finding the difference (comparison model)
Two quantities are compared to find the difference.
$8-2=6$
Counters:

Bead strings:

Make a set of 8 and a set of 2. Then count the gap.

Multilink Towers:

Cuisenaire Rods:

Number tracks:

Start on 5 then count on 3 more
Hands may be used in the early stages of counting and counting on.

Multilink Towers:

Cuisenaire Rods:

Number tracks:

(1) 3 (3) $45789(10 / 11 / 13 / 14 / 15 / 16 / 17 / 18 / 20$

Start with the smaller number and count the gap to the larger number.

1 set within another (part-whole model)

The quantity in the whole set and one part are known, and may be used to find out how many are in the unknown part.
$8-2=6$

Bead strings:
$8-2=6$

Bridging through 10s

This stage encourages children to become more efficient and begin to employ known facts.

Bead string:

$7+5$ is decomposed / partitioned into $7+3+2$. The bead string illustrates 'how many more to the next multiple of 10?' (children should identify how their number bonds are being applied) and then 'if we have used 3 of the 5 to get to 10 , how many more do we need to add on? (ability to decompose/partition all numbers applied)

Number track:

Steps can be recorded on a number track alongside the bead string, prior to transition to number line.

Number line

Bead string:

000001

$12-7$ is decomposed / partitioned in $12-2-5$.
The bead string illustrates 'from 12 how many to the last/previous multiple of 10?' and then 'if we have used 2 of the 7 we need to subtract, how many more do we need to count back? (ability to decompose/partition all numbers applied)

Number Track:

Steps can be recorded on a number track alongside the bead string, prior to transition to number line.

Number Line:

Counting up or 'Shop keepers' method

Bead string:

$12-7$ becomes $7+3+2$.
Starting from 7 on the bead string 'how many more to the next multiple of 10 ?' (children should recognise how their number bonds are being applied), 'how many more to get to 12?'.

Number Track:

Number Line:

Hands may be used in counting back.

This model of calculation encourages efficiency and application of known facts (how to add ten)

$7+9$	$18-9$

Bead string:

Children find 7, then add on 10 and then adjust by removing 1 .

Number line:

Bead string:

Children find 18, then subtract 10 and then adjust by adding 1.

Number line:

Ensure that the children have been transitioned onto Base 10 equipment and understand the abstract nature of the single 'tens' sticks and 'hundreds' blocks

Partitioning (Aggregation model)

$34+23=57$
Base 10 equipment:

Children create the two sets with Base 10 equipment and then combine; ones with ones, tens with tens.

Partitioning (Augmentation model)

Base 10 equipment:
Encourage the children to begin counting from the first set of ones and tens, avoiding counting from 1. Beginning with the ones in preparation for formal columnar method.

Number line:

At this stage, children can begin to use an informal method to support, record and explain their method. (optional)

Place value cards and coins (10p and 1p) may be used to aid addition:

Take away (Separation model)

$57-23=34$

Base 10 equipment:

Children remove the lower quantity from the larger set, starting with the ones and then the tens. In preparation for formal decomposition.

Number Line:

Coins (10p and 1p) may be used to aid subtraction:

Bridging with larger numbers

Once secure in partitioning for addition, children begin to explore exchanging. What happens if the ones are greater than 10? Introduce the term 'exchange'. Using the Base 10 equipment, children exchange ten ones for a single tens rod, which is equivalent to crossing the tens boundary on the bead string or number line.

Base 10 equipment:
$37+15=52$
眭門

Discuss counting on from the larger number irrespective of the order of the calculation.

Base 10 equipment:
$52-37=15$

Expanded Vertical Method (optional)

Children are then introduced to the expanded vertical method to ensure that they make the link between using Base 10 equipment, partitioning and recording using this expanded vertical method.

Base 10 equipment:
$67+24=91$

Base 10 equipment:
$91-67=24$

By returning to earlier manipulative experiences children are supported to make links across mathematics, encouraging 'If I know this...then I also know...' thinking.

Decimals

Ensure that children are confident in counting forwards and backwards in decimals - using bead strings to support.

Bead strings:

Each bead represents 0.1 , each different block of colour equal to 1.0
Base 10 equipment (* not the Diennes blocks used for work with whole numbers):

\square	$\square \square \square \square \square$	\square
0.1	1.0	10.0

Addition of decimals
 Aggregation model of addition

Counting both sets - starting at zero.
$0.7+0.2=0.9$

$\begin{array}{lllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7\end{array}$
0.80 .9

Augmentation model of addition

Starting from the first set total, count on to the end of the second set.
$0.7+0.2=0.9$

Bridging through 1.0

Encouraging connections with number bonds.
$0.7+0.5=1.2$

Partitioning

$3.7+1.5=5.2$
(${ }^{*}$ Not Diennes used for work with whole numbers)

Subtraction of decimals Take away model
$0.9-0.2=0.7$

$\begin{array}{lllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7\end{array}$
$0.8 \quad 0.9$

Finding the difference (or comparison model):
$0.8-0.2=$

Bridging through 1.0
Encourage efficient partitioning.
$1.2-0.5=1.2-0.2-0.3=0.7$

Partitioning
$5.7-2.3=3.4$
(* Not Diennes used for work with whole numbers)

Gradation of difficulty- addition:

1. No exchange $(27+32=)$
2. Exchanging ones to tens ($45+37=$)
3. Exchanging tens to hundreds $(52+63=)$
4. Exchanging ones to tens and tens to Hundreds ($48+73=$)
5. More than two numbers in calculation $(24+32+65=)$
6. As 6 but with different number of digits $(124+36+52=)$
7. Decimals up to 2 decimal places with the same number of decimal places ($14.2+5.9=$)
8. Add two or more decimals with a range of decimal places $(24.9+7.14=)$

Gradation of difficulty- subtraction:

1. No exchange ($56-23=$)
2. Fewer digits in the answer ($48-39=$)
3. Exchanging tens for ones ($47-18=$)
4. Exchanging hundreds for tens ($236-72=$)
5. Exchanging hundreds to tens and tens to ones ($346-168=$)
6. As 5 but with different number of digits ($257-69=$)
7. Decimals up to 2 decimal places with the same number of decimal places (23.7-8.9=)
8. Subtract numbers with a range of decimal places $(24.23-14.6=/ 11.1-5.34=$)

Progression in Multiplication and Division

Multiplication and division are connected.
Both express the relationship between a number of equal parts and the whole.

Part	Part	Part	Part
Whole			

The array above consists of four columns and three rows.

It could be used to represent the number sentences: -
$3 \times 4=12$
$4 \times 3=12$
$3+3+3+3=12$
$4+4+4=12$

And it is also a model for division: -
$12 \div 4=3$
$12 \div 3=4$

$$
12-4-4-4=0
$$

$12-3-3-3-3=0$

Early experiences Children will have real, practical experiences of handling equal groups of objects and counting in 2s, 10 s and 5 s . Children work on practical problem solving activities involving equal sets or groups.

Arrays

Children learn to model a multiplication calculation using an array. This model supports their understanding of commutativity and the development of the grid in a written method. It also supports the finding of factors of a number.

```
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
\bigcirc \bigcirc \bigcirc \bigcirc 5 \times 3 = 1 5
```



```
\(3 \times 5=15\)
```


Repeated addition (repeated aggregation)

3 times 5 is $5+5+5=15$ or 5 lots of 3 or 5×3 Children learn that repeated addition can be shown on a number line.

Children learn that repeated addition can be shown on a bead string.

Children also learn to partition totals into equal trains using Cuisenaire Rods

Children will understand equal groups and share objects out in play and problem solving. They will count in 2 s , 10s and 5 s .

Children learn to model a division calculation using an array. This model supports their understanding of the development of partitioning and the 'bus stop method' in a written method. This model also connects division to finding fractions of discrete quantities.

Sharing equally

6 sweets get shared between 2 people. How many sweets do they each get? A bottle of fizzy drink shared equally between 4 glasses.

Grouping or repeated subtraction

There are 6 sweets. How many people can have 2 sweets each? How many 2 s are there in 6 ?

'Chunking' using a bead string or number line $12 \div 3=4$ counting, on

The bead string helps children with interpreting division calculations, recognising that $12 \div 3$ can be seen as 'how many 3s make 12?'
Cuisenaire Rods also help children to interpret division calculations.

Partitioning for multiplication

Arrays are also useful to help children visualise how to partition larger numbers into more useful representation.
$9 \times 4=36$

9
Children should be encouraged to be flexible with how they use number and can be encouraged to break the array into more manageable chunks.
$9 \times 4=$

Which could also be seen as
$9 \times 4=(3 \times 4)+(3 \times 4)+(3 \times 4)=12+12+12=36$
Or $3 \times(3 \times 4)=36$
And so $6 \times 14=(6 \times 10)+(6 \times 4)=60+24=84$

Partitioning for division

The array is also a flexible model for division of larger numbers
$56 \div 8=7$

Children could break this down into more manageable arrays, as well as using their understanding of the inverse relationship between division and multiplication.
$56 \div 8=(40 \div 8)+(16 \div 8)=5+2=7$

To be successful in calculation learners must have plenty of experiences of being flexible with partitioning, as this is the basis of distributive and associative law.

Associative law

E.g. $3 \times(3 \times 4)=36$

The principle that if there are

(multiplication only) :-
three numbers to multiply these can be multiplied in any order.

Distributive law (multiplication):-

E.g. $6 \times 14=(2 \times 10)+(4 \times 10)+(4 \times 6)=20+40+24=84$

This law allows you to distribute a multiplication across an addition
 or subtraction.

Distributive law (division):-

E.g. $56 \div 8=(40 \div 8)+(16 \div 8)=5+2=7$

This law allows you to distribute a division across an addition or subtraction.

Grid method

This written strategy is introduced for the multiplication of $\mathrm{TO} \times \mathrm{O}$ to begin with.
Early stages may be modelled and supported using Base 10 equipment.
It may require column addition methods to calculate the total.

Short division

Children use Base 10 equipment to model division (sharing). Beginning with $\mathrm{TO} \div \mathrm{O}$ without exchange and moving on to exchange and larger numbers.
e.g. $78 \div 3=(60 \div 3)+(18 \div 3)=26$

Short multiplication - multiplying by a single digit

The use of Base 10 equipment supports the understanding of short multiplication. First
without exchange before moving onto exchanging.
The first stage being the expanded form of short multiplication as illustrated.
24×6

Short division - dividing by a single digit
The use of Base 10 equipment supports the understanding of short division. First without exchange before moving on to exchanging.
$136 \div 4$
 34
4 436

Gradation of difficulty (short multiplication)

1. TO $\times \mathrm{O}$ no exchange ($23 \times 3=$)
2. $\mathrm{TO} \times \mathrm{O}$ with exchange of ones into tens ($24 \times 3=$)
3. $\mathrm{TO} \times \mathrm{O}$ extra digit in the answer ($34 \times 4=$)
4. HTO $\times \mathrm{O}$ no exchange ($124 \times 2=$)
5. HTO $\times \mathrm{O}$ with exchange of ones into tens $(114 \times 5=)$
6. HTO $\times \mathrm{O}$ with exchange of tens into hundreds ($232 \times 4=$)
7. HTO $\times \mathrm{O}$ with exchange of ones into tens and tens into hundreds ($246 \times 3=$)
8. As 4-7 but with greater number digits $\times \mathrm{O}$ ($1243 \times 4=$)
9. O.t $\times \mathrm{O}$ no exchange ($2.3 \times 3=$)
10. O.t with exchange of tenths to ones ($2.5 \times 3=$)
11. As 9-10 but with greater number of digits which may include a range of decimal places $\times \mathrm{O}$ $(12.35 \times 5=)$

Gradation of difficulty (short division)

$1 . \mathrm{TO} \div \mathrm{O}$ no exchange no remainder ($64 \div 2=$)
2. $\mathrm{TO} \div \mathrm{O}$ no exchange with remainder ($45 \div 4=$)
3. $\mathrm{TO} \div \mathrm{O}$ with exchange no remainder ($65 \div 5=$)
4. $\mathrm{TO} \div \mathrm{O}$ with exchange, with remainder ($74 \div 4=$)
5. Zero in the quotient e.g. $816 \div \mathbf{4 = 2 0 4}$
6. As $1-5 \mathrm{HTO} \div \mathrm{O}(136 \div 3=)$
7. As $1-5$ greater number of digits $\div 0$ ($2305 \div 7=$)
8. As 1-5 with a decimal dividend ($7.5 \div 5$ or $0.12 \div 3$)
9. Where the divisor is a two digit number $(252 \div 12=)$

See below for gradation of difficulty with remainders

Dealing with remainders

Remainders should be given as integers, but children need to be able to decide what to do after division, such as rounding up or down accordingly.
e.g.:

I have 62 p. How many 8 p sweets can I buy?

- Apples are packed in boxes of 8. There are 86 apples. How many boxes are needed?

Gradation of difficulty for expressing remainders

1. Whole number remainder
2. Remainder expressed as a fraction of the divisor
3. Remainder expressed as a simplified fraction
4. Remainder expressed as a decimal

Long multiplication-multiplying by more

 than one digitChildren will refer back to grid method by using Base 10 equipment with no exchange and using synchronised modelling of written recording as a long multiplication model before moving to TO x TO etc.

Long division -dividing by more than one digit
Children should be reminded about partitioning numbers into multiples of 10, 100 etc. before recording as chunking model of long division using Base 10 equipment
See the following pages for exemplification of these methods.

Chunking model of long division using Base 10 equipment

This model links strongly to the array representation; so for the calculation $72 \div 6=?$ - one side of the array is unknown and by arranging the Base 10 equipment to make the array we can discover this unknown. The written method should be written alongside the equipment so that children make links.

Begin with divisors that are between 5 and 9

$72 \div 6=12$

1. Make a rectangle where one side is 6 (the number dividing by) - grouping 6 tens

10

60
After grouping 6 lots of 10 (60) we have 12 left over
2. Exchange the remaining ten for ten ones
3.

4. Complete the rectangle by grouping the remaining ones into groups of 6

6 | $\frac{12}{72}$ |
| :---: |
| $\frac{-60}{12}$ |
| $\frac{-12}{0}$ |$(10 x)$

Move onto working with divisors between 11 and 19

Children may benefit from practice to make multiples of tens using the hundreds and tens and tens and ones.
$289 \div 12$

1. Make a rectangle where one side is 12 (the number dividing by) using hundreds and tens

With 49 remaining
2. Make groups of 12 using tens and ones

No more groups of 12 can be made and 1 remains

